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Abstract: Recently, 3D-printed polymeric materials have been successfully replacing the usual ones 

especially used in sliding systems like couplings. Among the polymeric materials, Acrylonitrile 

Butadiene Styrene (ABS) and Poly Lactic Acid (PLA) can be the competitive materials in such 

application after 3D-printing. In this study, 3D printing was used to produce samples from ABS and 

PLA via fused deposition modelling (FDM) technology. Then friction behavior of 3D-printed samples 

was investigated depending on printing orientation of the samples. Ultra High Molecular Polyethylene 

Weight (UHMWPE), as a well-known industrial polymer, was also used for comparing the friction 

behavior of 3D-printed ABS and PLA polymers. Friction tests were conducted using a pin-on-plate type 

tribometer according to ASTM G133 under different applied loads and sliding speeds at room 

temperature. It was found that printing orientation of all ABS and PLA samples has a considerable effect 

on their friction behavior. Transverse direction (T.D) of the 3D-printed samples shows higher coefficient 

of friction (COF) values than the longitudinal direction under all applied loads and sliding speeds. On 

the other hand, COF values obtained in both 3D-printed samples increase as the load and speed increase 

regardless of the printing direction. When both 3D-printed materials are compared, PLA samples exhibit 

lower COF values than ABS samples in both printing directions and under all loads and speeds. 

However, the UHMWPE sample produced with traditional method shows much lower COF values and 

stable change in friction behavior under all conditions compared to 3D-printed PLA and ABS samples. 
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1. Introduction  
In some practical applications, the couple of metal/polymeric materials is often used to reduce the 

friction that occurs in the sliding conditions as in the case of Figure 1. In such applications, many 

polymeric materials are commonly used because of their good self-lubricated properties [1]. Ultra High 

Molecular Polyethylene Weight (UHMWPE) is one of the most widely used polymeric materials in 

friction applications. Many techniques or processing procedures have been utilized for manufacturing 

of parts or hybrid structures from the polymeric materials. In recent years, three-dimensional (3D) 

printing technology has been widely used especially for complex shaped parts. As known, this 

technology is an additive manufacturing (AM) process that enables the fabrication of different shaped 

parts by adding layers of materials on top of each other successively [2]. The most well-known 3D 

printing technology is FDM-Fused Deposition Modeling, also called as Fused Filament Fabrication 

(FFF) based on extrusion [3,4]. The process proceeds by melting the filament of thermoplastic polymer 

and then solidifying into final parts (Figure 2). 3D printed materials generally have anisotropic properties 

due to the layer by layer processing procedure. 
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Sliding systems are commonly used in many applications like food packaging, aerospace industry, 

automotive manufacturing, and biomedical engineering. In such systems, some complex shaped parts 

can easily be produced in net-shaped forms using 3D printing technology at a relatively low cost without 

wasting materials. Polymeric materials can achieve good frictional and wear properties for bearings and 

bushing applications in such areas due to the ability of forming a thin film transfer on the metal 

counterface which assists in reducing the friction coefficient [5]. 

There are many studies on structural and mechanical properties of 3D printed polymeric materials 

[6-8]. However, limited studies have been performed on their tribological behaviors which are especially 

used in sliding application with metal counterparts like couplings. Muammel et al. [9] examined the 

friction behavior of 3D printed ABS with different colors and PLA under alternative movements on 

cylindrical pairs of flat plastic plates. They found that static and dynamic friction factors were different. 

Dagnan et al. [10] studied the friction behavior of AM polymers using UMT Tribo Lab with the linear 

reciprocating module in a ball-on-plate configuration under dry sliding conditions. They used Polyjet D 

photopolymer technique for manufacturing the parts from AM polymers. The frictional performance 

was shown to be strongly dependent on the surface orientation under 1 N load where surface asperities 

are seen to play a major role during the reciprocating sliding. However, it was shown that bulk 

mechanical properties affect the coefficient of friction values rather to a greater degree than surface 

roughness under higher loads of 5 and 10 N. Roy et al. [11] also studied tribological behavior of 3D 

printed (Stratasys F170) ABS and PLA polymers using block-on-roller configuration. They analyzed the 

effects of the printing parameters on tribological behavior of 3D printed ABS and PLA samples. In 

another study, Pawlak W. [12] obtained a COF value of about 0.48 in coupling PLA/metal pair. A 

composite structure of 50% graphite and 50% of poly lactide was created which allowed to decrease 

both coefficient of friction and linear wear. 

Influence of the surface roughness of 3D printed parts on their friction behavior was reported by 

Nedić et al. [13]. They utilized a tribometer with block-on-disc configuration and found relatively higher 

COF values from 3D printed ABS samples than that from PLA samples. 

Figure 1. A representative 

sliding system including 

both metallic and 

polymeric materials and 

intersections 

Figure 2. A schematic 

showing a 3D printing based 

on fused deposition 

modelling [4] 
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On the other hand, the parts produced by AM technologies like FDM technique may have 

dependence on printing direction due to the nature of 3D printing technology. Therefore, the 3D printed 

parts may have anisotropic behavior, and friction coefficient values may change depending on printing 

direction [14]. As looking at the literature, very limited studies have been undertaken on this issue [1] 

and further investigations need to be able to establish a general conclusion especially for 3D-printed 

polymeric materials. 

In view of the above, the main purpose of this paper is to investigate friction behavior of different 

3D-printed polymeric materials depending on printing orientations. For this purpose, two polymeric 

materials of Acrylonitrile Butadiene Styrene (ABS), Poly Lactic Acid (PLA) are created by Fused 

Deposition Modelling (FDM) technology. Also, UHMWPE, as a well-known industrial polymer, was 

also used for comparison. Friction test were conducted using a pin-on-plate type tribometer according 

to ASTM G133 under different loads and sliding speeds at room temperature.  

 

2. Materials and methods  
In this study, three polymeric materials of Acrylonitrile Butadiene Styrene (ABS), Poly Lactic Acid 

(PLA) and Ultra High Molecular Polyethylene Weight (UHMWPE) are used. The PLA is a 

biodegradable thermoplastic derived from renewable resources (corn) with good properties. This 

polymer has relatively high strength and high elastic modulus which makes it a suitable candidate for 

producing different components used in either the industrial packaging field or automotive industry [15]. 

PLA filaments used for this work was extruded at 190℃, with printing speed as 23 mm/s. As known, 

PLA has been used in 3D printing applications for a long time. If the mechanical and tribological 

properties of that polymer can be improved more, further possible applications like housings or structural 

interior of automobiles or other vehicles can be realized. The ABS is an opaque engineering 

thermoplastic widely used in electronic housings, auto parts and consumer products [11]. It is an ideal 

material of choice for various structural applications due to its good physical properties. This polymeric 

material has a good resistance of abrasion and it is hard in nature and thus delivers good impact strength. 

ABS Filament in this work is operated at the temperature of 230℃.  

In this paper, 3D- printed samples from the PLA and ABS were manufactured using Fused 

Deposition Modeling (FDM) (Figure 2) technique via a WANHAO Duplicator 4s plus printer. This 3D 

printer can produce a model with dimensions of 200 mm x 200 mm x 180 mm with a positioning 

accuracy of 12 μm for X and Y axes and 0.4 μm for Z axis. The PLA and ABS samples produced by 3D 

printing and traditionally produced UHMWPE sample are shown in Figure 3. The process parameters 

of the 3D printing process are given in Table 1. The mechanical properties for the polymeric materials 

tested are gathered from the literature [8, 15, 16] and presented in Table 2.  

 

  
 

 

Figure 3. The samples 

used in friction tests:  

a) 3D printed PLA sample 

and (b) 3D printed ABS 

sample. L.D and T.D 

represent the longitudinal 

direction ad the transverse 

direction, respectivally.  

(c) Conventially produced 

UHMWPE sample 
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Table 1. 3D printing parameters 

Parameters 
Polymeric Materials 

PLA ABS 

Layer thicknesses, mm 1 1 

Fill density, % 20% 20% 

Print speed, mm/s 23 23 

Printing temperature, oC 190 230 

Bed temperature, oC 70 50 

 

Table 2. Mechanical properties of the samples tested [8,15,16] 

Mechanical Properties 

 

Polymeric materials 

PLA ABS UHMWPE 

Poisson’s ratio 0.36 0.43 0.46 

Tensile modulus of elasticity (MPa) 3500 1700-3200 915±423 

Tensile yield strength (MPa) 70 29.8-43 25.6±3.3 

Tensile ultimate elongation (%) 7 10-50 317±140 

 

Sliding friction tests of the samples were performed with the UMT 2 tribometer CETR (Campbell, 

CA, USA) (Figure 4 (a)). A schematic diagram of the pin-on-plate friction set-up is shown in Figure 4 

(b). This set-up has been used extensively in many studies reported in the literature and this configuration 

has been shown to be appropriate for UHMWPE-on-hard (metal or ceramic) combinations [17]. This 

equipment can accurately control and measure the applied loads, displacements and velocities of the pin. 

It is connected to a computer that can record the horizontal and normal forces. A cylindrical metallic pin 

(5 mm in diameter) made of CoCr alloy with the hardness of 260 HB was used. The normal force applied 

to the pin can be exerted onto the sample surfaces along two printing directions: longitudinal direction 

L.D (0°) and transverse direction T.D (90°) (Figure 3ab).  

A series of sliding friction tests were carried out on two types of 3D printed polymeric materials of 

PLA and ABS. Also, the UHMWPE was used as a good reference polymeric material. Dimensions of 

3D-printed polymeric samples were 100 mm x 45 mm x 5 mm while those of UHMWPE sample were 

80 mm x 30 mm x 5 mm (Figure 3).  

The sliding friction tests were performed at the room temperature under dry sliding condition for 

sliding speeds of 1 mm/s and 0.5 mm/s. Applied load values were 50 N, 75 N and 100 N. These test 

conditions were determined considering the literature and the real working conditions. Before 

conducting the tests, the pin and the surfaces of the samples are cleaned with ethanol. The surface profile 

and average roughness (Ra) values of the samples were measured with the 2D Profilometer SJ301 

(Mitutoyo, Japan). 

 

         
 

Figure 4.  

a) A picture of UMT 

sliding test set-up 

used for evaluation 

of friction behavior 

of the samples 

produced and  

b) a schematic 

showing the pin-on-

plate test 

configuration 
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3. Results and discussions 
The surface profiles of 3D-printed ABS and PLA and conventionally produced UHMWPE samples 

are shown in Figures 5-6 along both longitudinal direction (L.D) and transverse direction (T.D). It is 

seen from the graphs that the conventionally produced UHMWPE sample shows surface texture with 

more frequent and shorter spacing surface roughness fluctuations. The 3D-printed samples exhibit 

surface texture with a relatively wider range of roughness fluctuations. The average surface roughness 

(Ra) values of 3D-printed ABS and PLA samples and conventionally produced UHMWPE sample are 

given in Table 3 depending on printing directions. Through the L.D, Ra values of 3D-printed PLA and 

ABS samples and conventionally produced UHMWPE sample are 1.40±0.24 m, 0.69±0.20m and 

1.40±0.15 m, respectively. Through the T.D, they are 2.77±0.10 m, 6.58±0.10m and 1.39±0.15 m, 

respectively. Along the L.D, the lowest Ra value was found from the 3D-printed ABS sample as 

0.69±0.20 m. In this direction, the PLA and UHMWPE samples showed almost the same Ra value of 

1.40 m. Along the T.D, the UHMWPE sample showed the lowest Ra value of 1.39±0.15 m, which is 

as almost the same with that obtained along the L.D. In the T.D direction, 3D-printed PLA and ABS 

samples exhibited much higher Ra values than those in L.D. The PLA and ABS samples showed 

2.77±0.10 m and 6.58±0.10 m Ra values, respectively.  

 

 
Figure 5. Surface texture showing 2D profiles of the deviation of roughness along the L.D:  

a)3D-printed PLA sample, b) 3D-printed ABS sample and c) UHMWPE sample 
 

The variations of the coefficient of friction (COF) with displacement along the longitudinal direction 

for all samples at speeds of 0.5 mm/s and 1 mm/s and under normal loads of 50 N, 75 N and 100 N are 

shown in Figures 7 and 8. The figures show a sharp increase in COF during the initial transient-state 

sliding period with steady-state levels for all samples under all working conditions. 3D-printed PLA and 

ABS samples exhibit more scattering during the steady state region compared to conventionally 

produced UHMWPE sample. Also, this scattering in COF values decrease as increasing the sliding speed 

from 0.5 mm/s to 1 mm/s. It is also noteworthy that when the sliding speed increases, the friction 

coefficient curves are also slightly shifted upward for both 3D-printed samples. Both results may be due 

to the increase in sliding temperature generated between the polymeric sample and metallic pin surfaces  
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Figure 6. Surface texture showing 2D profiles of the deviation of roughness along the T.D:  

a) 3D-printed PLA sample, b) 3D-printed ABS sample and c) UHMWPE sample 
 

Table 3. Average roughness (Ra) values for both orientations of all samples 
Printing direction Longitudinal direction (L.D) Transversal direction (T.D) 

Samples PLA ABS UHMWPE PLA ABS UHMWPE 

Ra [µm] 1.40±0.24 0.69±0.20 1.40±0.15 2.77±0.10 6.58±0.10 1.39±0.15 

 

 

during sliding at relatively high speed under the same loads. Furthermore, the COF curves shifts upward 

for both 3D-printed samples as the applied load increases at both sliding speeds as expected from the 

friction’s laws. On the other hand, traditionally produced UHMWPE samples exhibit almost constant 

COF values after initial sharp increase. Also, no scattering was seen during the sliding period for that 

sample. 

Figures 9 and 10 show the variation of COF with displacement along the transverse direction for all 

samples at speeds of 0.5 mm/s and 1 mm/s and under the normal loads of 50 N, 75N and 100N. The 

COF for 3D-printed samples quickly reaches a value that is approximately constant for all samples under 

all working conditions as in the case for longitudinal direction. However, in this direction, the coefficient 

of friction exhibits more unstable change/oscillation during sliding for 3D printed samples. 
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Figure 7. The variation of coefficient of 

friction (COF) for all samples as a 

function of sliding displacement along 

the longitudinal direction under different 

applied loads of 50 N, 75 N and 100 N at 

a sliding speed of 0.5 mm/s 

Figure 8. The variation of coefficient of 

friction (COF) for all samples as a function 

of sliding displacement along longitudinal 

direction under different applied loads of 

50 N, 75 N and 100 N at a sliding speed  
of 1 mm/s 

 

Figure 9. The variation of coefficient of 

friction (COF) for all samples as a 

function of sliding displacement along 

the transverse direction under different 

applied loads of 50 N, 75 N and 100 N at 

a sliding speed of 0.5 mm/s 
 

Figure 10. The variation of coefficient 

of friction (COF) for all samples as a 

function of sliding displacement along 

transverse direction under different 

applied loads of 50 N, 75 N and 100 N 

 at a sliding speed of 1 mm/s 
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That instability in COF values may be because of relatively high surface roughness values. The Ra values 

along the T.D are higher than those along the L.D (Table 3). But the friction coefficient curves are also 

slightly shifted upward (to higher friction coefficient values) with increasing sliding speed and applied 

load.  

The average COF values for the whole duration of the test were also calculated from the graphs in 

Figures 7-10, and their changes for both longitudinal and transverse directions are shown in Figure 11 

and Figure 12, respectively. Also, the average COF values of all samples for both directions under 

different sliding conditions are shown in Table 4. In general, it can be said that the COF of 3D printed 

ABS and PLA samples slightly changes depending on the printing direction. The COF values of 3D 

printed ABS sample for the longitudinal direction are 0.297 and 0.375 at 0.5mm/s and 1mm/s, 

respectively, under 50 N load. These COF values increases to about 0.319 and 0.366, respectively, along 

the transversal direction. This trend is also valid under all loads (Figures 11-12 and Table 4). Regarding 

the 3D printed PLA samples, it can be said that the change in the COF values is almost the same with 

those obtained from 3D printed ABS samples. Thus, it is noteworthy that the COF values slightly 

increase along transverse direction for all samples due to increased Ra roughness value. Interestingly, 

the conventionally produced UHMWPE samples exhibit very low and stable COF values under all 

sliding conditions compared to 3D printed ABS and PLA samples. UHMWPE samples show almost the 

same COF values around 0.110 under all loads and sliding speeds (Table 4).  

 

 

 
Figure 11. The variation of COF values for all samples along the longitudinal 

 direction depending on applied loads of 50 N, 75 N and 100 N and at sliding  

speeds of: (a) 0.5 mm/s and (b) 1 mm/s 

 

 

 
Figure 12. The variation of COF values for all samples along the transverse  

direction depending on  applied loads of 50 N, 75 N and 100 N and at sliding  

speeds of: (a) 0.5 mm/s and (b) 1 mm/s 
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Table 4. The average COF values for all samples along both directions  

under different sliding conditions 

 
 

4. Conclusions 
This paper investigates the friction behavior of two different 3D-printed polymeric materials 

(Acrylo-nitrile Butadiene Styrene (ABS), Poly Lactic Acid (PLA)) depending on printing orientations 

at different sliding speeds and under different applied loads. For comparison, conventionally produced 

Ultra High Molecular Polyethylene Weight (UHMWPE) was also used. The main findings and 

conclusions of this study can be summarized as follows: 

-the samples from ABS and PLA polymeric materials were successfully produced by 3D printing 

using fused deposition modelling (FDM) technology; 

-3D Printing orientation of all ABS and PLA samples has an effect on their friction behavior. 

Transverse direction (T.D) of the 3D-printed samples shows higher coefficient of friction (COF) values 

than the longitudinal direction under all applied loads and sliding speeds; 

-COF values obtained in both 3D-printed samples increase with increasing applied loads and sliding 

speeds regardless of the printing direction;  

-3D-printed PLA samples exhibit lower COF values than ABS samples along both longitudinal and 

transverse directions of the samples under all loads and sliding speeds; 

-UHMWPE sample produced by traditional method shows much lower COF values and exhibits 

more stable friction behavior under all sliding conditions compared to 3D-printed PLA and ABS 

samples; 

-it can be concluded in the light of the findings that 3D printing direction and types of polymeric 

materials have a considerable effect on their friction behavior. This research is a step forward in this area 

and further studies are needed. More detailed comparative studies including wear behavior and 

atmospheric conditions can be performed including more polymeric materials having different surface 

roughness values. Also, research may be extended to include the effect of microstructure and mechanical 

properties on the friction and wear behaviors of 3D-printed polymeric materials working with metallic 

counter faces.  
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